Neural Networks and Support Vector Machine Models Applied to Energy Consumption Optimization in Semiautogeneous Grinding
نویسندگان
چکیده
Semiautogenous (SAG) mills for ore grinding are large energy consumption equipments. The SAG energy consumption is strongly related to the fill level of the mill. Hence, on-line information of the mill fill level is a relevant state variable to monitor and drive in SAG operations. Unfortunately, due to the prevailing conditions in a SAG mill, it is difficult to measure and represent from first principle model the state of the mill fill level. Alternative approaches to tackle this problem consist in designing appropriate datadriven models, such as Neural Networks (NN) and Support Vector Machine (SVM). In this paper, NN and a SVM (specifically a Least Square-SVM) are used as Nonlinear autoregressive with exogenous inputs (NARX) and Nonlinear autoregressive moving average with exogenous inputs (NARMAX) models for on-line estimation of the filling level of a SAG mill. Good performances of the developed models could allow implementation in SAG operation/control hence optimizing its energy consumption.
منابع مشابه
Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملBubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کامل